最重要的特征是连续性,有了实数的连续性,才能讨论极限,连续,微分和积分。正是在讨论函数的各种极限运算的合法性的过程中,人们才逐渐建立起了严密的数学分析理论体系。”
“那现在,大家都了解数分的来历了,我们正式上课。”吴教授说完,缓慢的打开了教材。
陈舟觉得还可以啊,谁说大学老师讲课速度贼快的?这课前科普不贴心吗?
然而,吴教授接下来的话,仿佛就是为了回答陈舟的疑惑。
吴教授说道:“先翻到第4页,从最后一段开始,我给你们讲讲戴德金分割。这个点,比较重要,必须吃透。”
“吴教授,前面的内容呢?”有人举手打断道。
吴教授看了这人一眼,轻飘飘回道:“集合还用我给你们讲吗?自己想看就回顾一下。”
然后便继续讲课:“讲戴德金分割定理之前,我需要先讲一下戴德金分划......”
“......那么戴德金分个定理对R的任一分划(A∣B),B中必有最小数。”
“......有界集与确界,都是概念性的,你们自己看,我就不讲了。”
“......几个常用不等式也有证明方法,比较简单,自己看。”
“那么下面讲函数......”
陈舟有些无语的看着讲台上滔滔不绝的吴教授,这是讲课吗?这比他翻书还快...
很快,第一章结束,吴教授开始讲第二章,序列的极限。
陈舟不禁感慨了一句,幸好把高数自学完了,要不他还真怀疑自己能否跟上进度。
那个戴德金分划和戴德金分割定理,就不是好理解的玩意。
只不过,陈舟发现赵琦琦和朱明理两人眼神熠熠闪光,听得津津有味。
寝室第四人李礼,也正自个埋头看书。
“果然打游戏都是假象...”陈舟默默在心中说了一句,然后又看了一圈班里的其他同学。
除了极少数几个人,可以明显看出跟不上进度,大部分的同学,要么聚精会神的在听课,要么低头在自学。
距离下课前还剩二十分钟,吴教授停下来喝了口水,然后说道:“我们今天就讲这么多吧,进度稍微有点慢。下面,是这堂课的答题时间。”
说完,吴教授转身开始在黑板上写题目。
陈舟翻了翻书,黄皮肤的数分教材已经讲了两章,这进度,算慢?
吴教授在黑板上出完题目,又转回身来跟大家说道:“每个人自己找草稿纸,写上姓名和答案。如果不会,只写姓名也行。”
陈舟先拿出草稿纸,把名字写上,然后抬头看着黑板,把题目抄在草稿纸上。
“设Xn=(1+((-1)^n)/n)^n,n=1,2,3...,试证明{Xn}为发散序列。”
题目很短,陈舟只看了一眼,审题完成。
吴教授在第一节课还是没有太为难大家的,这道题不难。
『加入书签,方便阅读』
-->> 本章未完,点击下一页继续阅读(第2页/共3页)