p;至于多努力,他不知道。
他只在意结果。
“大哥,我背九九乘法表时发现2x3和3x2,它们结果都一样,两者有什么区别没?”
“结果相同,含义不同!除了意义外,其实也没太大区别!”
黎阳寻思这其中还是自己规定好,不然族人到时可能会拎不清。
前世中,其中这些是经过一番改变才下好定义,俗称课改。
所改是关于‘乘’和‘乘以’。
3个人每个人吃了2块芋曼茎,求他们一共吃了多少芋曼茎?
再‘乘’和‘乘以’区分前,只能读作‘2乘以3’或者‘3乘2’,如果有读者列成‘3x2’这样的式子,则被视为全错。
‘2x3’和‘3x2’结果一样,又符合乘法交换律,后面上面为了降低难度,不再用被乘数和乘数的提法,统一叫做乘数或因数。
两个因数它们位置可以交换,再读它们不能用‘乘以’只能用‘乘’,对式子‘2x3’,既可以读作‘2乘3’也可以读作‘3乘2’!
虽然因数位置可以交换,但结合具体情境,乘法意义并没改变。
以上面吃多少芋曼茎结果为力,列式即可列成‘3x2’可以列为‘2x3’,但表示意义却只有一个,那就是三个人加起来吃了多少芋曼茎。
而不是芋曼茎加起来吃了多少呃……人!
“一般让你们算结果,你们只需要算结果即可,其中涉及意义到具体情境自己再自行判断!”
提到这,黎阳顺势提出乘法交换!
“两个因数,它们可以交换位置!结果并不会改变!”
“这个规律,我称它为:乘法交换律!”
九天上,娲皇宫。
伏羲念叨着‘乘法交换律’若有所思。
“因数?意义不同?结果相同?有趣的交换!”
他越发期待黎阳后面教学。
『加入书签,方便阅读』