sp;那么,在那各类各样数量繁多到用无限无穷又无数无尽都无法形容的一系列不动点最顶端巅峰之处,便是用所谓无上天庭、至高神国、最终彼岸……各种形容词都远远无法描述的∑2-世界基数。
注意,是∑2-世界基数,不是世界基数,这两者是完全不同的两个概念。
而对于∑1-世界基数,若a是一个幂容许基数,那么va便是zfc-的一个模型。
〖zfc-〗,意指的即是将zfc的替代公理,完全限制在∑1公式范围里。
至于∑1公式,就是一个开头仅有一个无界存在量词的1阶存在命题。
所谓〖无界〗,便是会比任意给定的有界值更大,而想要抵达∑1-世界基数,则需要对阿列夫函数的一切递归运算全部封闭。
至于在此之上的∑2-世界基数,却要更为复杂庞大的多,因为其数学公式的开头,便是一段无界存在命题又链接一段无界全称命题。
若从集合论角度看,即是若设a是一个∑2-世界基数,那么只要a具备某种局部性质,便定然存在无界多k
同时a的所谓局部性质,即指此性质仅需在va这一v之前段就能被见证,并不会也不需要涉及更高层次领域。
如果涉及更高领域,就是全局性质。
另外一点,或许有许许多多的知性生命,都曾从书本上或者他人口中,知晓过康托尔所言说过的所谓「绝对无穷」。
那么事实上,若按照那「论域」较为死板和先验的朴素集合论的思想,∑2-世界基数的基本描述,就完全能够满足康托尔绝对无穷所需要的所有充分条件。
注意,这里所提到的绝对无穷,并非那种宽泛模糊偏向于神学意义或者哲学性质亦或个人私设性质的绝对无穷,而是朴素集合论绝对无穷。
朴素集合论……或者说康托尔绝对无穷的本质,是任何性质都可被其他所有更小的无穷基数所共享的无穷。
更细致的拆开来讲,即是康托尔所定义的朴素集合论绝对无穷,便是认为存在一个基数Ω。
然后无论哪一种哪一类用于形容【大】这一抽象概念的无公式定义类性质,Ω都并非首个拥有此性质的无穷基数,而是已经有Ω个比Ω更小的无穷基数也拥有此种此类性质。
因此,Ω无法用任何小于Ω的无穷基数自下而上的构造出来,所以Ω就是绝对无穷,是不可描述不可超越的上帝。
这种带有几分神学性质的‘绝对无穷Ω’,自然不会符合许多知性生命思维当中的,那种近乎可与所谓全知全能划等号的绝对无穷。
但也由此可以看出,∑2-世界基数的深邃与庞大。
总之,∑2-世界基数就完全可以被视作为「朴素绝对无穷」。
而既然存在2,那么自然就会有3、会有4、会有5。
所以在∑2-世界基数之上,赫然还存在有∑36-世界基数、∑9999-世界基数、∑-世界基数,乃至n可以取遍一切自然数的∑n-世界基数。
这一系列∑世界基数的每一个,都要远远……远远超越那等若于朴素绝对无穷的∑2-世界基数无限无
『加入书签,方便阅读』
-->> 本章未完,点击下一页继续阅读(第2页/共4页)